Symposium on Quantum Materials Synthesis, Porto, October 22 - 24, 2025

Surface effects in infinite-layer nickelate films

Leonard M. Verhoff¹, Liang Si^{1,2}, Karsten Held¹

¹Institute of Solid State Physics, TU Wien, 1040 Vienna, Austria ²School of Physics, Northwest University, Xi'an 710127, China

Nickelates show intriguing similarities to cuprates, and have emerged as a compelling platform for studying high temperature superconductivity [1]. Infinite-layer rare-earth (R) nickelates, RNiO₂, consist of an alternating stacking of NiO₂ layers and rare-earth spacing layers along the crystallographic z-axis. While their bulk structure has been extensively studied computationally, the samples that exhibit superconductivity in experiments are thin nickelate films synthesized through a chemical reduction process. The topotactic reduction removes apical oxygen from perovskite RNiO₃, grown on substrates such as SrTiO₃ (001) [2].

Here, we explore emerging surface effects in RNiO₂ films by studying the formation and electronic structure of various surfaces within the framework of density functional theory (DFT) and dynamical mean-field theory (DMFT).

While perfect stoichiometry favors a NiO₂-terminated surface, the presence of excess apical oxygen in the surface region – possibly a remnant of the chemical reduction process – might stabilize an RO-terminated surface. Furthermore, the atomic structure at the surface is found to strongly influence the local electronic structure. These surface effects indicate the absence of an electron pocket around the Γ point – even for NdNiO₂ surfaces, in contrast to DFT and DMFT bulk calculations for NdNiO₂ [1].

We acknowledge support through a joint German and Austrian Science Funds (DFG and FWF) project; FWF Grant-DOI:10.55776/I5398.

References:

- [1] Kitatani, M.; Si, L.; Janson, O.; Arita, R.; Zhong, Z.; Held, K. Nickelate Superconductors—a Renaissance of the One-Band Hubbard Model. npj Quantum Mater. 2020, 5 (1), 59. https://doi.org/10.1038/s41535-020-00260-y.
- [2] Li, D.; Lee, K.; Wang, B. Y.; Osada, M.; Crossley, S.; Lee, H. R.; Cui, Y.; Hikita, Y.; Hwang, H. Y. Superconductivity in an Infinite-Layer Nickelate. Nature 2019, 572 (7771), 624–627. https://doi.org/10.1038/s41586-019-1496-5.